

Spruce and Peatland Responses Under Climatic and Environmental Change mnspruce.ornl.gov

An experiment to assess the response of northern peatland ecosystems to increases in temperature and exposures to elevated atmospheric CO₂ concentrations

eatlands cover only 3% of Earth's land surface but contain about 20% of the global soil carbon pool. Peat deposits originated from woody plants and moss-generated litter. Because of cold, oxygen-poor conditions, the carbon contained in northern peatlands has accumulated for thousands of years. Under current warming trends and consistent with climate projections, such accumulations of carbon are now viewed as being vulnerable to further decomposition or mineralization. If global temperatures warm as projected at higher latitudes, these peatlands could release large amounts of greenhouse gases such as carbon dioxide (CO_2) and methane (CH_4) that could accelerate global warming. Our ability to predict or simulate the fate of the stored carbon in response to climatic disruption remains hampered by a limited understanding of the controls of carbon turnover and the composition and functioning of peatland ecosystems.

To identify and quantify these critical environmental response mechanisms, the Terrestrial Ecosystem Science (TES) program within the Department of Energy's (DOE) Office of Biological and Environmental Research (BER) is supporting a whole-ecosystem experiment in an ombrotrophic bog (i.e., a raised bog that receives all water and nutrients from direct precipitation) located in the Marcell Experimental Forest of northern Minnesota. The Spruce and Peatland Responses Under Climatic and Environmental Change

Key SPRUCE Science Questions

The experiment's overarching science questions cover ecosystem responses ranging from the microbe to landscape scale. They include:

- Will deep belowground warming in the future release 10,000 years of accumulated carbon from peatlands that store onethird of Earth's terrestrial carbon? At what rate?
- Will these carbon releases be in the form of CO₂ or CH₄ with 30 times the warming potential?
- Are peatland ecosystems and organisms vulnerable to atmospheric and climatic change? What changes are likely?
- Will ecosystem services (e.g., regional water balance) be compromised or enhanced by atmospheric and climatic change?

Answers to these questions will provide insights not only for small-scale processes but also for landscape-relevant water, carbon, and energy fluxes for similar peatlands. Results will inform higherorder models of vegetation responses under various levels of climatic warming and associated end-of-century atmospheric change.

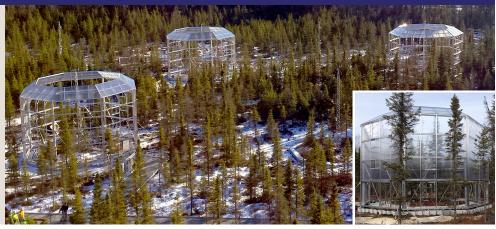
Aerial View of SPRUCE Project Site. SPRUCE research is being conducted on an 8.1 hectare peatland of the Marcell Experimental Forest in northern Minnesota. Ten open-topped aboveground enclosures are being built on this site to simulate various levels of warming and CO₂ exposure. The remote landscape includes a mix of uplands, bogs, fens, lakes, and streams.

(SPRUCE) project, led by Oak Ridge National Laboratory (ORNL), will enable the assessment of ecological responses across multiple spatial scales—including microbial communities, moss populations, various higher plant types, and some animal groups. The experiment will evaluate a wide range of increased temperatures and levels of elevated atmospheric CO₂ concentrations. Direct and indirect effects of the experimental perturbations will be tracked and analyzed over a decade. This comprehensive suite of spruce-peatland process studies and observations is being strongly linked to model development and application requirements for improving process representation, calibrating models, and evaluating model predictions for boreal systems. SPRUCE is a cooperative joint venture among scientists from DOE national laboratories, the U.S. Department of Agriculture (USDA) Forest Service, and universities.

Warming and CO₂ Treatments

By 2100, future terrestrial environments are projected to be 4° C to 8° C warmer than today, depending on the latitude. Mean deep soil (> 1 m) temperatures also will rise with climate warming. A series of large, open-topped aboveground enclosures and a new method for warming soils from the surface down to approximately 2 m are being installed in the peatland to simulate various levels of warming and CO₂ exposure at the whole-ecosystem scale. Soil and air temperatures within these enclosures will cover multiple levels of warming from

Office of Biological and Environmental Research



Whole-Ecosystem Warming Method.

Experimental enclosures are being built to provide warming from the tree tops to the deep soil (-2 m to -3 m). The open-topped enclosures encompass 12-m diameter internal study areas, with 8-m tall side walls. A subsurface corral isolates the belowground peat environment for measures of local hydrologic conditions. Aboveground warming enclosures are in the final phase of construction. **Inset**: Closeup of enclosure.

ambient to $+9^{\circ}$ C. Simultaneously, atmospheric CO₂ levels within the enclosures will be elevated up to 800 to 900 parts per million to reflect current expectations for the levels that may be associated with end-of-century temperatures.

This new experimental system provides a platform for testing the mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystem functions to important environmental change variables (e.g., thresholds of organisms to decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO_2 and CH_4 to the atmosphere). The ultimate goal is to determine the levels of warming at which ecosystems will reach a critical change in temperature and CO_2 levels in the future that would push them into a new state (i.e., altered community composition and capacity to store carbon). Deep peatland heating was initiated in June 2014 to independently test the impacts of warming on the bog's ancient deep carbon stocks, ahead of the full whole-ecosystem warming that will begin in June 2015.

Connecting Observations to Models for Improved Climate Predictions

New modeling approaches are needed to incorporate the complex relationships among warming, drying, mineralization processes, and vegetation responses associated with climatic change. The experimental data generated by SPRUCE will provide quantitative evidence of the effects of elevated temperatures and $\rm CO_2$ on northern peatland ecosystems and the vast carbon stores associated with the hydrology and biogeochemistry of these globally widespread landscapes. These data can lead to key improvements in how biogeochemistry models (and further community models) represent the temperature dependence of carbon losses as $\rm CO_2$ and $\rm CH_4$ and the extent to which they might be counterbalanced by enhanced net primary production that is driven by a longer growing season, nutrient enrichment, and elevated atmospheric $\rm CO_2$ levels.

Picea-Sphagnum Bog.

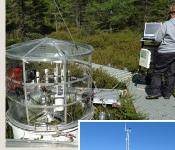
Picea mariana, or black spruce, and Sphagnum, a genus of peat mosses, are the dominant overstory and groundcover, respectively, of the boreal peatland where SPRUCE is being conducted. The bog contains deep peat deposits perched several meters above the regional groundwater table.

Research Platform for the Scientific Community

The core suite of SPRUCE research is being pursued by scientists at ORNL and the USDA's Forest Service. Collaborations with universities have been established to leverage the project, and more are encouraged. Also welcomed are new initiatives consistent with the design, science mission, spatial constraints, and integrity of the experiment on the sensitive bog ecosystem. Collaboration opportunities include but are not limited to:

- Canopy albedo changes
- Remote sensing of canopy function
- Microscale LIDAR
- Bole respiration
- Trace gas emissions
- Herbivory
- Food web linkages
- Pests and pathogens (host defenses versus pathogen virulence)

For more information on how to become involved with the SPRUCE project, go to **mnspruce.ornl.gov/contact**/.


Environmental Monitoring.

Periodic shrub, Sphagnum, and peat community-level measurements of CO₂ and CH₄ are assessed from 1.2-m diameter in situ collars left in the experimental plots for seasonal and treatment response evaluations.

Inset: SPRUCE experimental

plot showing the environmental monitoring mast and visible

infrastructure for belowground gas flux and pore water measurements prior to the addition of the aboveground enclosure.

Program Managers and Websites

Daniel B. Stover, Daniel.Stover@science.doe.gov, 301.903.0289 **J. Michael Kuperberg**, Michael.Kuperberg@science.doe.gov, 301.903.3511

SPRUCE (mnspruce.ornl.gov)
Terrestrial Ecosystem Science

(tes.science.energy.gov)

Climate and Environmental Sciences Division (science.energy.gov/ber/research/ DOE Office of Biological and Environmental Research (science.energy.gov/ber/)

DOE Office of Science (science.energy.gov)

U.S. Department of Energy (energy.gov)

Images were provided by Oak Ridge National Laboratory.

April 2015